Regularization networks for inverse problems: A state-space approach
نویسندگان
چکیده
The solution of linear inverse problems obtained by means of regularization theory has the structure of a neural network similar to classical RBF networks. However, the basis functions depend in a nontrivial way on the specific linear operator to be inverted and the adopted regularization strategy. By resorting to the Bayesian interpretation of regularization, we show that such networks can be implemented rigorously and efficiently whenever the linear operator admits a state-space representation. An analytic expression is provided for the basis functions as well as for the entries of the matrix of the linear system used to compute the weights. Moreover, the weights can be computed in O(N) operations by a suitable algorithm based on Kalman filtering. The results are illustrated through a deconvolution problem where the spontaneous secretory rate of Luteinizing Hormone (LH) of the hypophisis is reconstructed from measurements of plasma LH concentrations.
منابع مشابه
Implementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملA numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization
In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...
متن کاملOptimum Shape Design of a Radiant Oven by the Conjugate Gradient Method and a Grid Regularization Approach
This study presents an optimization problem for shape design of a 2-D radiant enclosure with transparent medium and gray-diffuse surfaces. The aim of the design problem is to find the optimum geometry of a radiant enclosure from the knowledge of temperature and heat flux over some parts of boundary surface, namely the design surface. The solution of radiative heat transfer is based on the net r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 39 شماره
صفحات -
تاریخ انتشار 2003